NTHU Rain Removal Project

نویسندگان

  • Li-Wei Kang
  • Chia-Wen Lin
  • Yu-Hsiang Fu
چکیده

Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single image was rarely studied in the literature, where no temporal information among successive images can be exploited, making the problem very challenging. In this paper, we propose a single-imagebased rain removal framework via properly formulating rain removal as an image decomposition problem based on morphological component analysis (MCA). Instead of directly applying conventional image decomposition technique, we first decompose an image into the low-frequency and high-frequency parts using a bilateral filter. The highfrequency part is then decomposed into “rain component” and “non-rain component” by performing dictionary learning and sparse coding. As a result, the rain component can be successfully removed from the image while preserving most original image details. Experimental results demonstrate the efficacy of the proposed algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rain Removal via Shrinkage-Based Sparse Coding and Learned Rain Dictionary

— This paper introduces a new rain removal model based on the shrinkage of the sparse codes for a single image. Recently, dictionary learning and sparse coding have been widely used for image restoration problems. These methods can also be applied to the rain removal by learning two types of rain and non-rain dictionaries and forcing the sparse codes of the rain dictionary to be zero vectors. H...

متن کامل

Joint Rain Detection and Removal via Iterative Region Dependent Multi-Task Learning

In this paper, we address a rain removal problem from a single image, even in the presence of heavy rain and rain streak accumulation. Our core ideas lie in the new rain image models and a novel deep learning architecture. We first modify an existing model comprising a rain streak layer and a background layer, by adding a binary map that locates rain streak regions. Second, we create a new mode...

متن کامل

Robust Video Content Alignment and Compensation for Rain Removal in a CNN Framework

Rain removal is important for improving the robustness of outdoor vision based systems. Current rain removal methods show limitations either for complex dynamic scenes shot from fast moving cameras, or under torrential rain fall with opaque occlusions. We propose a novel derain algorithm, which applies superpixel (SP) segmentation to decompose the scene into depth consistent units. Alignment of...

متن کامل

Deep joint rain and haze removal from single images

Rain removal from a single image is a challenge which has been studied for a long time. In this paper, a novel convolutional neural network based on wavelet and dark channel is proposed. On one hand, we think that rain streaks correspond to high frequency component of the image. Therefore, haar wavelet transform is a good choice to separate the rain streaks and background to some extent. More s...

متن کامل

NTHU at NTCIR-10 CrossLink-2: An Approach toward Semantic Features

This paper describes the approaches of NTHU in the NTCIR-10 Cross-Lingual Link Discovery task, also named CrossLink-2. In this task, we aim to discover valuable anchors in Chinese, Japanese or Korean (CJK) articles and to link these anchors to related English Wikipedia pages. To achieve the objective, we do not only depend on Wikipedia’s distinguishing features (e.g. anchor links information an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011